Energy transfer in compressible channel flows with two-dimensional sinusoidal rough walls

Author:

Chen Sanmu12ORCID,Zhang Wen12ORCID,Han Jiahui12,Wan Minping12ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology 1 , Shenzhen 518055, Guangdong, China

2. Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications, Southern University of Science and Technology 2 , Shenzhen 518055, Guangdong, China

Abstract

We perform direct numerical simulations to investigate the effect of two-dimensional sinusoidal roughness in the compressible channel flows with varying roughness height at Mach numbers M0=0.8 and 1.5. We observed the strong oblique shock waves and alternating compression/expansion regions are generated due to the roughness at higher Mach number, which also results in higher temperature in the channel center. The effects of roughness height on the transfer between the kinetic and internal energies are analyzed in detail. We found that the roughness significantly enhances the production of the turbulent kinetic energy while the Mach number has little influence on this term. The transfer terms between kinetic and internal energies are pressure- and viscosity-related, and is dominated by the viscous terms. The roughness-induced shock waves strongly affect the local distributions of the pressure-related terms, but its spatial average is only slightly modified. The energy transfer from the mean kinetic energy to both the internal energy and the turbulent kinetic energy is amplified by the roughness through the viscous terms. The average effect of roughness is intensified as the roughness height increases, but is insensitive to the Mach number variation.

Funder

National Natural Science Foundation of China

Special Project for Research and Development in Key areas of Guangdong Province

Department of Science and Technology of Guangdong Province

Shenzhen Science and Technology Innovation Program

Publisher

AIP Publishing

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3