Compact high-order gas-kinetic scheme for direct numerical simulation of compressible turbulent flows

Author:

Wang Yibo,Wang Yuhang,Pan LiangORCID

Abstract

In this paper, the three-dimensional fully compact high-order gas-kinetic scheme (HGKS) is proposed for the direct numerical simulation of compressible turbulent flows. Because of the high-order gas evolution model, the numerical fluxes as well as the point-wise conservative variables can be evaluated from the time-accurate gas distribution function at the cell interface. As a result, both the cell-averaged variables and their cell-averaged gradients can be updated inside each cell. Based on the cell averaged values and their gradients, the compact Hermite weighted essentially non-oscillatory (HWENO) scheme is developed, in which the dimension-by-dimension reconstruction is used for three-dimensional turbulences. In both normal and tangential directions, the fifth-order HWENO reconstruction is adopted. Compared with the classical WENO scheme, the stencil for the HWENO scheme only contains 33 cells for each cell. To achieve the temporal accuracy, the two-stage fourth-order temporal discretization is used. For the evaluation of point-wise variables, the simplified third-order gas-kinetic solver is used. Several classical benchmark problems are simulated, which validate the accuracy, resolution, and robustness of compact HGKS. As a comparison, the numerical results of HGKS using non-compact WENO reconstruction are also provided. Due to the compact stencil, the compact HGKS has a favorable performance for turbulence simulation in resolving the multi-scale structures.

Funder

Beijing Natural Science Foundation

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3