Turbulence via intermolecular potential: A weakly compressible model of gas flow at low Mach number

Author:

Abramov Rafail V.1ORCID

Affiliation:

1. Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, 851 S. Morgan St., Chicago, Illinois 60607, USA

Abstract

In our recent works, we proposed a theory of turbulence in inertial gas flow via the mean field effect of an intermolecular potential. We found that, in inertial flow, turbulence indeed spontaneously develops from a laminar initial condition, just as observed in nature and experiments. However, we also found that density and temperature behave unrealistically in our inertial flow model. The goal of the current work is to demonstrate the technical possibility of modeling compressible, turbulent flow at a low Mach number where both density and temperature behave in a more realistic fashion. Here, we focus on a new treatment of the pressure variable, which constitutes a compromise between compressible, incompressible, and inertial flow. Similar to incompressible flow, the proposed equation for the pressure variable is artificial, rather than derived directly from kinetic formulation. However, unlike that for incompressible flow, our pressure equation only damps the divergence of velocity, instead of setting it directly to zero. We find that turbulence develops in our weakly compressible model much like it does in the inertial flow model, but density and temperature behave more realistically.

Funder

Simons Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3