Planning of distributed energy storage by a complex network approach

Author:

Wu Qigang1ORCID,Xue Fei2ORCID,Lu Shaofeng3,Jiang Lin1ORCID,Wang Xiaoliang1ORCID,Huang Tao4ORCID

Affiliation:

1. Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, United Kingdom

2. Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China

3. Shien-Ming Wu School of Intelligent Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China

4. Politecnico di Torino, Torino, Italy

Abstract

An energy storage system (ESS) has been considered one promising technology in dealing with challenges from the risk of power fluctuations and load mismatch in power girds. A distributed ESS (DESS) has better efficiency in reducing net losses and operating costs. The net-ability quantifies the power transmission ability across the grid where power is delivered from generators to loads under constraints. This paper proposes a new complex network-based metric: energy storage performance (ESP), for assessing the significance of the DESS inside a power grid. It aids the optimal location selections by improving grids' net-ability structurally. An auxiliary genetic algorithm (GA) sizing strategy is also deployed for deciding the optimal capacity of each DESS with the minimum daily operating and investment costs. The result shows that the DESS improves the rate of cost reduction within an equivalent 24-h daily operation. Moreover, this methodology finds quasi-optimal solutions with better feasibility and efficiency. The improvement of network performance by the DESS depends on its original structure. The result shows that with the assistance of siting plan by a complex network theory, the calculation efficiency improves and performs better in larger power grids. In the IEEE-30 test system, our solution is about 1/3 calculation time as the GA search. The quasi-optimal costs 1.8% more than the optimal searched by the GA. Meanwhile, the DESS can save more cost for networks with higher network-wide ESP value. In the IEEE-118 and IEEE-300 test systems, only the proposed hybrid-GA search can find a solution within a limited calculation time. Therefore, it could be promising in solving siting issues in the planning of smart grids.

Funder

Xi'an Jiaotong-Liverpool University

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimized dispatch of energy storage systems based on improved battery model;Journal of Renewable and Sustainable Energy;2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3