Dynamical process in the stagnation stage of the double-cone ignition scheme

Author:

Fang K.1ORCID,Zhang Y. H.1ORCID,Dong Y. F.12ORCID,Zhang T. H.12ORCID,Zhang Z.134ORCID,Yuan X. H.45ORCID,Li Y. T.1234ORCID,Zhang J.145ORCID

Affiliation:

1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chines Academy of Sciences 1 , Beijing 100190, China

2. School of Physical Sciences, University of Chinese Academy of Sciences 2 , Beijing 100049, China

3. Songshan Lake Materials Laboratory 3 , Dongguan 523808, China

4. Collaborative Innovation Centre of IFSA (CICIFSA), Shanghai Jiao Tong University 4 , Shanghai 200240, China

5. Key Laboratory for Laser Plasmas (MoE) and School of Physics and Astronomy, Shanghai Jiao Tong University 5 , Shanghai 200240, China

Abstract

In the double-cone ignition scheme, two deuterium–tritium shells in a pair of head-on Au cones are compressed and accelerated spherically [Zhang et al., Philos. Trans. R. Soc. A. 378 (2184), 20200015 (2020)]. The high-speed plasma jets from the cone tips collide and form a stagnating plasma with a higher density during the stagnation stage, preheating the plasma by the Coulomb potential. The preheated plasma is then rapidly heated up further to the ignition temperature by fast electrons generated by a powerful laser pulse of 10 ps. The conditions of the stagnating plasma strongly affect the fast-heating efficiency and consequently the success of ignition. In order to understand dynamical process in the stagnation stage, a special experimental campaign was conducted, where the evolution of the stagnating plasma was diagnosed through the temporal resolved self-emission signals. The spatial-temporal distributions of temperature and density of the colliding plasma were analyzed by the Abel inversion algorithm and the Legendre polynomial fitting. The stagnation period was found to be about 300 ps, the temperature of the core area of the stagnated plasma was between 340 and 390 eV, while the aspect ratio of the colliding plasma was about 0.78.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3