Quantum plasmonics of few electrons in strongly confined doped semiconducting oxide: A DFT  + U study of ZnGaO

Author:

Dada D.1,Kurian G.1,Mochena M. D.1ORCID

Affiliation:

1. Department of Physics, Florida A&M University , Tallahassee, Florida 32317, USA

Abstract

It has been reported in photodoping experiments that localized surface plasmonic resonances can be sustained with electrons as few as 3. We performed first principles calculations of density functional theory, with the Hubbard U correction, to see if localized surface plasmonic resonances can also be sustained by doping a wide bandgap ZnO with few shallow donors of Ga. We distributed 3–6 dopants approximately uniformly, due to quasi-spherical geometry of the quantum dot, in the dilute doping limit. The uniform distribution of dopants in quantum dots has been reported experimentally. Although the dopant configurations are limited due to computational cost, our findings shed light on absorption trends. Results for quantum dots of 1.4 nm, passivated with pseudo-hydrogens, show that localized surface plasmonic resonances can be generated in the near infrared range. The absorption linewidths for such small-sized quantum dots are broad. We find that the resonance linewidth depends on the orientation of surfaces and the number of secondary peaks on the concentration of dopants. The absorption coefficients, as functions of the principal values of the dielectric tensor, indicate that an electric field with orientation parallel to that of the most symmetric surface will produce localized surface plasmonic resonances with high quality factors.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3