Restoring the conservativity of characteristic-based segregated models: Application to the hybrid lattice Boltzmann method

Author:

Wissocq G.1ORCID,Coratger T.1,Farag G.1ORCID,Zhao S.1ORCID,Boivin P.1ORCID,Sagaut P.1ORCID

Affiliation:

1. Aix Marseille University, CNRS, Centrale Marseille, M2P2 Marseille, France

Abstract

A general methodology is introduced to build conservative numerical models for fluid simulations based on segregated schemes, where mass, momentum, and energy equations are solved by different methods. It is especially designed here for developing new numerical discretizations of the total energy equation and adapted to a thermal coupling with the lattice Boltzmann method (LBM). The proposed methodology is based on a linear equivalence with standard discretizations of the entropy equation, which, as a characteristic variable of the Euler system, allows efficiently decoupling the energy equation with the LBM. To this extent, any LBM scheme is equivalently written under a finite-volume formulation involving fluxes, which are further included in the total energy equation as numerical corrections. The viscous heat production is implicitly considered thanks to the knowledge of the LBM momentum flux. Three models are subsequently derived: a first-order upwind, a Lax–Wendroff, and a third-order Godunov-type schemes. They are assessed on standard academic test cases: a Couette flow, entropy spot and vortex convections, a Sod shock tube, several two-dimensional Riemann problems, and a shock–vortex interaction. Three key features are then exhibited: (1) the models are conservative by construction, recovering correct jump relations across shock waves; (2) the stability and accuracy of entropy modes can be explicitly controlled; and (3) the low dissipation of the LBM for isentropic phenomena is preserved.

Funder

Agence Nationale de la Recherche

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3