Pseudorandom lasing emission from self-patterned thin films of CsPbBr3

Author:

Ruditskiy Aleksey12ORCID,Dass Chandriker K.1ORCID,Trout Amanda H.3ORCID,Stevenson Peter R.1ORCID,Bedford Robert G.1ORCID,McComb David W.3ORCID,Durstock Michael F.1ORCID,Kennedy W. Joshua1ORCID

Affiliation:

1. Materials and Manufacturing Directorate, Air Force Research Laboratory 1 , Wright-Patterson Air Force Base, Dayton, Ohio 45433, USA

2. UES, Inc. 2 , Beavercreek, Ohio 45432, USA

3. Center for Electron Microscopy and Analysis (CEMAS), Ohio State University 3 , Columbus, Ohio 43212, USA

Abstract

Metal halide perovskites have garnered considerable interest for their potential uses in high-efficiency photonics, particularly in the construction of on-chip lasers. Despite extensive efforts to understand the mechanisms underlying perovskite-based lasing, no clear consensus has emerged. Moreover, the fabrication of practical lasing emitters requires the challenging integration of a low-defect active material into a device architecture with minimized complexity. In this study, we demonstrate a simple, multimode lasing emitter composed of a millimeter-scale single-crystalline thin film of CsPbBr3. Dislocations, created during vapor-based film deposition, function as lasing cavity walls and form close-packed sets of resonators with random sizes at two orthogonal orientations within the thin film. Collecting ensemble temperature and power-dependent lasing characteristics of multiple, independent lasing modes in a single sample enables a statistical analysis of the underlying lasing mechanism. Our results reveal that the power-dependent red-shift in the stimulated emission envelope is caused by coupling between the radiatively recombining excitons and the collective oscillations of a photoexcited electron–hole plasma within the perovskite.

Funder

Air Force Office of Scientific Research

Air Force Research Laboratory

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3