High-dimensional order parameters and neural network classifiers applied to amorphous ices

Author:

Faure Beaulieu Zoé1ORCID,Deringer Volker L.1ORCID,Martelli Fausto23ORCID

Affiliation:

1. Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford 1 , Oxford OX1 3QR, United Kingdom

2. IBM Research Europe, Hartree Centre 2 , Daresbury WA4 4AD, United Kingdom

3. Department of Chemical Engineering, University of Manchester 3 , Manchester M13 9PL, United Kingdom

Abstract

Amorphous ice phases are key constituents of water’s complex structural landscape. This study investigates the polyamorphic nature of water, focusing on the complexities within low-density amorphous ice (LDA), high-density amorphous ice, and the recently discovered medium-density amorphous ice (MDA). We use rotationally invariant, high-dimensional order parameters to capture a wide spectrum of local symmetries for the characterization of local oxygen environments. We train a neural network to classify these local environments and investigate the distinctiveness of MDA within the structural landscape of amorphous ice. Our results highlight the difficulty in accurately differentiating MDA from LDA due to structural similarities. Beyond water, our methodology can be applied to investigate the structural properties and phases of disordered materials.

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3