Analytic modeling of neural tissue: II. Nonlinear membrane dynamics

Author:

Schwartz B. L.12ORCID,Brown S. M.3,Muthuswamy J.1,Sadleir R. J.1

Affiliation:

1. School of Biological and Health Systems Engineering, Arizona State University, 501 E Tyler Mall, Tempe, Arizona 85287-9709, USA

2. Department of Physical Sciences, Phoenix College, 1202 W Thomas Road, Phoenix, Arizona 85013-4208, USA

3. School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Avenue, Tempe, Arizona 85281-3636, USA

Abstract

Computational modeling of neuroactivity plays a central role in our effort to understand brain dynamics in the advancements of neural engineering such as deep brain stimulation, neuroprosthetics, and magnetic resonance electrical impedance tomography. However, analytic solutions do not capture the fundamental nonlinear behavior of an action potential. What is needed is a method that is not constrained to only linearized models of neural tissue. Therefore, the objective of this study is to establish a robust, straightforward process for modeling neurodynamic phenomena, which preserves their nonlinear features. To address this, we turn to decomposition methods from homotopy analysis, which have emerged in recent decades as powerful tools for solving nonlinear differential equations. We solve the nonlinear ordinary differential equations of three landmark models of neural conduction—Ermentrout–Kopell, FitzHugh–Nagumo, and Hindmarsh–Rose models—using George Adomian’s decomposition method. For each variable, we construct a power series solution equivalent to a generalized Taylor series expanded about a function. The first term of the decomposition series comes from the models’ initial conditions. All subsequent terms are recursively determined from the first. We show rapid convergence, achieving a maximal error of [Formula: see text] with only eight terms. We extend the region of convergence with one-step analytic continuation so that our complete solutions are decomposition splines. We show that this process can yield solutions for single- and multi-variable models and can characterize a single action potential or complex bursting patterns. Finally, we show that the accuracy of this decomposition approach favorably compares to an established polynomial method, B-spline collocation. The strength of this method, besides its stability and ease of computation, is that, unlike perturbation, we make no changes to the models’ equations; thus, our solutions are to the problems at hand, not simplified versions. This work validates decomposition as a viable technique for advanced neural engineering studies.

Funder

National Institutes of Health

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3