Transparent and biocompatible In2O3 artificial synapses with lactose–citric acid electrolyte for neuromorphic computing

Author:

Qiu Haiyang12,Hao Dandan12,Li Hui12,Shi Yepeng12,Dong Yao12,Liu Guoxia12,Shan Fukai12ORCID

Affiliation:

1. College of Physics, Qingdao University, Qingdao 266071, China

2. College of Microtechnology & Nanotechnology, Qingdao University, Qingdao 266071, China

Abstract

Electrolyte-gated synaptic transistors are promising for artificial neural morphological devices. However, few literatures have been reported regarding the manufacturing of electrolyte-gated synaptic transistors with low cost and biocompatible components. Here, the fully transparent synaptic transistors based on water-induced In2O3 thin films have been integrated by sol–gel method at low temperature, and lactose dissolved in citric acid solution is used as the gate electrolyte. The migration of the ions at the interface plays a crucial role in the potentiation and depression of the synaptic weight. In this work, the biological synaptic functions, including excitatory postsynaptic current, paired-pulse facilitation, high-pass filtering characteristics, short-term memory, and long-term memory, are mimicked. Meanwhile, based on the potentiation/depression behaviors of the synaptic transistor, a three-layer artificial neural network is applied for pattern recognition, and the recognition accuracy is as high as 94.6%. This study offers a possibility to realize fully transparent synaptic devices with biocompatible components at low temperature.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3