Phase transitions and dynamics in ionic liquid crystals confined in nanopores

Author:

Nobori Hiroki1ORCID,Fujimoto Daisuke1ORCID,Yoshioka Jun1ORCID,Fukao Koji1ORCID,Konishi Takashi2ORCID,Taguchi Ken3ORCID

Affiliation:

1. Department of Physics, Ritsumeikan University 1 , Noji-Higashi 1-1-1, Kusatsu 525-8577, Japan

2. Graduate School of Human and Environmental Studies, Kyoto University 2 , Kyoto 606-8501, Japan

3. Graduate School of Advanced Science and Engineering, Hiroshima University 3 , Higashi-Hiroshima 739-8521, Japan

Abstract

We investigate the phase-transition behavior of ionic liquid crystals, namely 1-methyl-3-alkylimidazolium tetrafluoroborate, [Cnmim]BF4, confined in cylindrical nanopores using differential scanning calorimetry, x-ray scattering, and dielectric relaxation spectroscopy. Here, n is the number of carbon atoms in the alkyl part of this ionic liquid crystal. For n = 10 and 12, the isotropic liquid phase changes to the smectic phase and then to a metastable phase for the cooling process. During the subsequent heating process, the metastable phase changes to the isotropic phase via crystalline phases. The transition temperatures for this ionic liquid crystal confined in nanopores decrease linearly with the increase in the inverse pore diameter, except for the transitions between the smectic and isotropic phases. In the metastable phase, the relaxation rate of the α-process shows the Vogel–Fulcher–Tammann type of temperature dependence for some temperature ranges. The glass transition temperature evaluated from the dynamics of the α-process decreases with the decrease in the pore diameter and increases with the increase in the carbon number n. The effect of confinement on the chain dynamics can clearly be observed for this ionic liquid crystal. For n = 10, the melting temperature of the crystalline phase is slightly higher than that of the smectic phase for the bulk, while, in the nanopores, the melting temperature of the smectic phase is higher than that of the crystalline phase. This suggests that the smectic phase can be thermodynamically stable, thanks to the confinement effect.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3