The partially stirred reactor model for combustion closure in large eddy simulations: Physical principles, sub-models for the cell reacting fraction, and open challenges

Author:

Péquin Arthur12ORCID,Iavarone Salvatore123ORCID,Malpica Galassi Riccardo12ORCID,Parente Alessandro12ORCID

Affiliation:

1. Aero-Thermo-Mechanics Laboratory, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium

2. Brussels Institute for Thermal-Fluid Systems and Clean Energy (BRITE), Université Libre de Bruxelles and Vrije Universiteit Brussel, Brussels, Belgium

3. Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom

Abstract

For their ability to account for finite-rate chemistry, reactor-based models are well suited Turbulence–Chemistry Interactions (TCI) Sub-Grid Scale (SGS) closures for Large Eddy Simulations (LES). The SGS closure in the Partially Stirred Reactor (PaSR) model relies on the determination of the reacting fraction of each computational cell, whose definition is based on estimates of the characteristic mixing and chemical time scales. Direct Numerical Simulations (DNS) of turbulent combustion can supply key information on TCI for the development, validation, and comparison of combustion models. In particular, a priori testing allows the direct validation of model assumptions. In the present work, an a priori assessment of the PaSR model is conducted. Its ability to reconstruct thermo-chemical quantities of interest is investigated along with model assumptions. Sub-grid quantities are extracted from the DNS to investigate the role of the cell reacting fraction. Various definitions are then proposed to estimate the characteristic chemical timescale in the PaSR model. Modeled chemical source terms and heat release rates are compared against the filtered quantities from DNS data of a two-dimensional, spatially developing, turbulent nonpremixed jet flame with detailed kinetics. The results demonstrate the importance of accounting for the fine structures quantities in the context of reactor-based models. A new formulation of the chemical timescale is proposed and provides improved overall predictions. Several issues are raised in the discussion, representing realistic prospects for further developments of the PaSR model as a SGS combustion closure for LES.

Funder

Fonds De La Recherche Scientifique - FNRS

H2020 European Research Council

HORIZON EUROPE Marie Sklodowska-Curie Actions

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3