Effect of dopant redistribution in gate electrode on surface plasmon resonance in InGaZnO thin-film transistors

Author:

Su Hui1ORCID,Tang Wing Man1,Lai Pui To1ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong

Abstract

To study the effect of dopant redistribution at/near the gate-dielectric/gate-electrode interface during high-temperature processing on surface plasmon resonance in InGaZnO thin-film transistor, boron-doped Si wafers (resistivity = 0.02–0.021 Ω·cm) are annealed in N2 at different temperatures (900, 1000, 1050, and 1100 °C) to achieve lower surface doping concentrations via dopant out-diffusion and then used as the gate electrodes. Compared with the unannealed device, the devices fabricated on 900, 1050, and 1100 °C-annealed wafers show lower carrier mobility because the reduced doping concentrations at/near their gate-dielectric/gate-electrode interfaces weaken the gate screening effect on the remote phonon scattering (RPS) of the gate dielectric on the neighboring channel electrons. However, the device annealed at 1000 °C unexpectedly shows much lower carrier mobility. This result together with process simulation, Secondary Ion Mass Spectrometry analysis, and Fourier-transform infrared spectroscopy implies that the hole plasma at/near the surface of its p-Si gate electrode can oscillate with a frequency equal/close to the vibration frequency of the atoms in the gate dielectric, and the consequent surface plasmon resonance can greatly enhance the RPS to produce a large mobility reduction. In summary, for all the annealing temperatures, the mobility reduction caused by the lower gate-surface doping concentration indicates the larger impact of the holes at/near the gate-electrode surface than those in the gate-electrode bulk on the RPS.

Funder

RGC of HKSAR

the University Development Fund of the University of Hong Kong

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference26 articles.

1. Enabling high performance n-type metal oxide semiconductors at low temperatures for thin film transistors

2. A. Belmonte, H. Oh, N. Rassoul, G. L. Donadio, J. Mitard, H. Dekkers, R. Delhougne, S. Subhechha, A. Chasin, M. J. van Setten, L. Kljucar, M. Mao, H. Puliyalil, M. Pak, L. Teugels, D. Tsvetanova, K. Banerjee, L. Souriau, Z. Tokei, L. Goux, and G. S. Kar, in International Electron Devices Meeting (IEDM Technical Digest, 2020), pp. 28.2.1–28.2.4.

3. Positive Gate Bias Instability Induced by Diffusion of Neutral Hydrogen in Amorphous In-Ga–Zn-O Thin-Film Transistor

4. Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules

5. Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3