Comment on “Communication: Is directed percolation in colloid–polymer mixtures linked to dynamic arrest?” [J. Chem. Phys. 148, 241101 (2018)]

Author:

Schmiedeberg Michael1ORCID

Affiliation:

1. Institut für Theoretische Physik 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

Abstract

In their Communication [J. Chem. Phys. 148, 241101 (2018)], Richard et al. state that in the work of Kohl et al. [Nat. Commun. 7, 11817 (2016)], a mechanism for dynamical arrest in temporal networks has been proposed that actually has never been proposed (and would be obviously wrong) in this context. The actual findings of Kohl et al. are not tested nor affected by the communication. The work of Richard et al. rests on simulations in a regime of the phase diagram that significantly differs from the one that Kohl et al. consider. In this Comment, it is shown that both the effective density and the rescaled second virial coefficient indicate that the comparison presented by Richard et al. is invalid. Therefore, the implications that are based on this comparison are incorrect. There is no indication for a disagreement between the simulations of Richard et al. and those of Kohl et al., and I am confident that upon consistent comparison and interpretation of the results, both works can contribute to a more comprehensive picture of gel-forming systems.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3