Ultrafast excited state dynamics in the monomeric and trimeric photosystem I core complex of Spirulina platensis probed by two-dimensional electronic spectroscopy

Author:

Russo Mattia12ORCID,Casazza Anna Paola3ORCID,Cerullo Giulio12ORCID,Santabarbara Stefano4ORCID,Maiuri Margherita12ORCID

Affiliation:

1. Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

2. Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

3. Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy

4. Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milano, Italy

Abstract

Photosystem I (PSI), a naturally occurring supercomplex composed of a core part and a light-harvesting antenna, plays an essential role in the photosynthetic electron transfer chain. Evolutionary adaptation dictates a large variability in the type, number, arrangement, and absorption of the Chlorophylls (Chls) responsible for the early steps of light-harvesting and charge separation. For example, the specific location of long-wavelength Chls (referred to as red forms) in the cyanobacterial core has been intensively investigated, but the assignment of the chromophores involved is still controversial. The most red-shifted Chl a form has been observed in the trimer of the PSI core of the cyanobacterium Spirulina platensis, with an absorption centered at ∼740 nm. Here, we apply two-dimensional electronic spectroscopy to study photoexcitation dynamics in isolated trimers and monomers of the PSI core of S. platensis. By means of global analysis, we resolve and compare direct downhill and uphill excitation energy transfer (EET) processes between the bulk Chls and the red forms, observing significant differences between the monomer (lacking the most far red Chl form at 740 nm) and the trimer, with the ultrafast EET component accelerated by five times, from 500 to 100 fs, in the latter. Our findings highlight the complexity of EET dynamics occurring over a broad range of time constants and their sensitivity to energy distribution and arrangement of the cofactors involved. The comparison of monomeric and trimeric forms, differing both in the antenna dimension and in the extent of red forms, enables us to extract significant information regarding PSI functionality.

Funder

Fondazione Cariplo

PRIN 2017

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3