The stability analysis based on viscous theory of Faraday waves in Hele–Shaw cells

Author:

Li XingshengORCID,Li JingORCID

Abstract

The linear instability of Faraday waves in Hele–Shaw cells is investigated with consideration of the viscosity of fluids after gap-averaging the governing equations due to the damping from two lateral walls and the dynamic behavior of contact angle. A new hydrodynamic model is thus derived and solved semi-analytically. The contribution of viscosity to critical acceleration amplitude is slight compared to other factors associated with dissipation, and the potential flow theory is sufficient to describe onset based on the present study, but the rotational component of velocity can change the timing of onset largely, which paradoxically comes from the viscosity. The model degenerates into a novel damped Mathieu equation if the viscosity is dropped with two damping terms referring to the gap-averaged damping and dissipation from dynamic contact angle, respectively. The former increases when the gap size decreases, and the latter grows as frequency rises. When it comes to the dispersion relation of Faraday waves, an unusual detuning emerges due to the imaginary part of the gap-averaged damping.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3