Solvent structure and dynamics over Brønsted acid MWW zeolite nanosheets

Author:

Wilson Woodrow N.1ORCID,Whittington Justin1ORCID,Rai Neeraj1ORCID

Affiliation:

1. Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University , Mississippi State, Mississippi 39762, USA

Abstract

In the liquid phase of heterogeneous catalysis, solvent plays an important role and governs the kinetics and thermodynamics of a reaction. Although it is often difficult to quantify the role of the solvent, it becomes particularly challenging when a zeolite is used as the catalyst. This difficulty arises from the complex nature of the liquid/zeolite interface and the different solvation environments around catalytically active sites. Here, we use ab initio molecular dynamics simulations to probe the local solvation structure and dynamics of methanol and water over MWW zeolite nanosheets with varying Brønsted acidity. We find that the zeolite framework and the number and location of the acid sites in the zeolite influence the structure and dynamics of the solvent. In particular, methanol is more likely to be in the vicinity of the aluminum (Al3+) at the T4 site than at T1 due to easy accessibility. The methanol oxygen binds strongly to the Al at the T4 site, weakening the Al–O for the bridging acid site, which results in the formation of the silanol group, significantly reducing the acidity of the site. The behavior of methanol is in direct contrast to that of water, where protons can easily propagate from the zeolite to the solvent molecules regardless of the acid site location. Our work provides molecular-level insights into how solvent interacts with zeolite surfaces, leading to an improved understanding of the catalytic site in the MWW zeolite nanosheet.

Funder

U.S. Department of Energy

Office of Science

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3