Development of low-temperature and ultrahigh-vacuum photoinduced force microscopy

Author:

Yamamoto Tatsuya1ORCID,Sugawara Yasuhiro1ORCID

Affiliation:

1. Department of Applied Physics, Osaka University , Suita, Osaka, Japan

Abstract

In this paper, we develop optical and electronic systems for photoinduced force microscopy (PiFM) that can measure photoinduced forces under low temperature and ultrahigh vacuum (LT-UHV) without artifacts. For our LT-UHV PiFM, light is irradiated from the side on the tip–sample junction, which can be adjusted through the combination of an objective lens inside the vacuum chamber and a 90° mirror outside the vacuum chamber. We measured photoinduced forces due to the electric field enhancement between the tip and the Ag surface, and confirmed that photoinduced force mapping and measurement of photoinduced force curves were possible using the PiFM that we developed. The Ag surface was used to measure the photoinduced force with high sensitivity, and it is effective in enhancing the electric field using the plasmon gap mode between the metal tip and the metal surface. Additionally, we confirmed the necessity of Kelvin feedback during the measurement of photoinduced forces, to avoid artifacts due to electrostatic forces, by measuring photoinduced forces on organic thin films. The PiFM, operating under low temperature and ultrahigh vacuum developed here, is a promising tool to investigate the optical properties of various materials with very high spatial resolution.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3