Affiliation:
1. Department of Applied Physics, Osaka University , Suita, Osaka, Japan
Abstract
In this paper, we develop optical and electronic systems for photoinduced force microscopy (PiFM) that can measure photoinduced forces under low temperature and ultrahigh vacuum (LT-UHV) without artifacts. For our LT-UHV PiFM, light is irradiated from the side on the tip–sample junction, which can be adjusted through the combination of an objective lens inside the vacuum chamber and a 90° mirror outside the vacuum chamber. We measured photoinduced forces due to the electric field enhancement between the tip and the Ag surface, and confirmed that photoinduced force mapping and measurement of photoinduced force curves were possible using the PiFM that we developed. The Ag surface was used to measure the photoinduced force with high sensitivity, and it is effective in enhancing the electric field using the plasmon gap mode between the metal tip and the metal surface. Additionally, we confirmed the necessity of Kelvin feedback during the measurement of photoinduced forces, to avoid artifacts due to electrostatic forces, by measuring photoinduced forces on organic thin films. The PiFM, operating under low temperature and ultrahigh vacuum developed here, is a promising tool to investigate the optical properties of various materials with very high spatial resolution.
Funder
Japan Society for the Promotion of Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献