Characteristics of evolution and collapse in spark-induced cavitation bubbles

Author:

Qu TongORCID,Zhou Maolin,Luo JingORCID,Xu Weilin,Bai LixinORCID,Zhai Yanwei,Li Jie

Abstract

Numerous scientists have thoroughly researched cavitation bubble dynamics using experimental methods such as tube arrest, underwater discharge, ultrasound, and laser focusing. In this study, with the aid of high-speed photography, the formation mechanism of the electrode-contact spark-induced cavitation bubble is discovered, i.e., electrolysis results in non-condensable gases wrapping the small inter-electrode gaps, and the non-condensable gases are broken down by discharge to form plasma, which then induces the cavitation bubble. Since the cavitation bubbles already contain a certain amount of non-condensable gases during the discharge process, the differences in the spatiotemporal evolution and collapse characteristics of the cavitation bubbles with varying amounts of non-condensable gases are further analyzed. The results show that underwater electrode-contact discharge system has an optimal voltage if the capacitance and discharge electrode size remain constant, and the cavitation bubbles generated under the optimal voltage condition are not only morphologically closest to the laser-induced cavitation bubbles, but also the change in radius over time during collapse is quite consistent with the Rayleigh bubble. Furthermore, compared to cavitation bubbles generated under varying voltages, those induced by the optimal voltage have a lower amount of non-condensable gases. This leads to the minimum first contraction radius and the maximum rebound radius being close to the corresponding values of the laser-induced cavitation bubbles. These new findings are of great significance for the improvement of experimental technology in the study of cavitation bubble dynamics, obtaining precise and dependable experimental data, and validating numerical simulations.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3