Affiliation:
1. Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, China
Abstract
Nanocomposite magnets have attracted much attention because of their ultra-high theoretical magnetic energy product and saving rare earth resources. In this study, the Fe93.5Si6.5 with higher hardness than the most common soft magnetic phase (α-Fe) was used to synthesize SmCo5/Fe-Si nanocomposite magnets, and its nanosized process was studied. The results showed that Fe-Si can be well dispersed into SmCo5 matrix through 12 hours of ball milling, and appeared in fine and evenly distributed grains in the SmCo5/Fe-Si nanocomposites, indicating it is suitable for soft magnetic phase. The nanosized process of Fe-Si phase can be summarized as from the irregular shape of agglomeration, to long chain, and finally too uniformly dispersed Fe-Si particles with increased milling time. As a result, the SmCo5/Fe-Si nanocomposite magnet with the optimal maximum magnetic energy product was 14.3 MGOe, accompanied by remanence of 9.5 kG and coercivity of 8.2 kOe. Our results show that by using Fe-Si with high hardness as the soft magnetic phase, the prepared nanocomposite magnet not only has good properties, but also can be expected that the two phases with closer mechanical properties can be deformed harmoniously.
Funder
National Natural Science Foundation of China
Key Program of Science and Technology Development Project of Beijing Municipal Education Commission of China
International Research Cooperation Seed Fund of Beijing University of Technology
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献