Fe-Si and its nanocrystallization as soft magnetic phase in SmCo-based nanocomposites

Author:

Zhang Yu1,Li Yuqing1,Liu Weiqiang1,Yue Ming1,Zhang Dongtao1,Zhang Hongguo1ORCID

Affiliation:

1. Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, China

Abstract

Nanocomposite magnets have attracted much attention because of their ultra-high theoretical magnetic energy product and saving rare earth resources. In this study, the Fe93.5Si6.5 with higher hardness than the most common soft magnetic phase (α-Fe) was used to synthesize SmCo5/Fe-Si nanocomposite magnets, and its nanosized process was studied. The results showed that Fe-Si can be well dispersed into SmCo5 matrix through 12 hours of ball milling, and appeared in fine and evenly distributed grains in the SmCo5/Fe-Si nanocomposites, indicating it is suitable for soft magnetic phase. The nanosized process of Fe-Si phase can be summarized as from the irregular shape of agglomeration, to long chain, and finally too uniformly dispersed Fe-Si particles with increased milling time. As a result, the SmCo5/Fe-Si nanocomposite magnet with the optimal maximum magnetic energy product was 14.3 MGOe, accompanied by remanence of 9.5 kG and coercivity of 8.2 kOe. Our results show that by using Fe-Si with high hardness as the soft magnetic phase, the prepared nanocomposite magnet not only has good properties, but also can be expected that the two phases with closer mechanical properties can be deformed harmoniously.

Funder

National Natural Science Foundation of China

Key Program of Science and Technology Development Project of Beijing Municipal Education Commission of China

International Research Cooperation Seed Fund of Beijing University of Technology

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3