Dynamic characteristics of droplet impact on vibrating superhydrophobic substrate

Author:

Lin Chensen12ORCID,Chen Shuo12,Wei Ping12ORCID,Xiao Lanlan3,Zhao Dongxiao4ORCID,Liu Yang5

Affiliation:

1. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

2. Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University, Shanghai 201804, China

3. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

4. UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China

5. Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China

Abstract

The vibration of solids is ubiquitous in nature and in industrial applications and gives rise to alternative droplet dynamics during impact. Using many-body dissipative particle dynamics, we investigate the impact of droplets on superhydrophobic solid surfaces vibrating in the vertical direction at a vibration period similar to the contact time. Specifically, we study the influence of the impact phase and vibration frequency. We evaluate the influence from the aspects of maximum spreading diameter, the solid–liquid contact time and area, and the momentum variation during the impact. To quantitatively evaluate the solid–liquid contact, we introduce the area-time integral, which is the integral of the contact area over the whole contact time. It is meaningful when the heat exchange between solid and liquid is considered. One characteristic phenomenon of droplets impacting vibrating substrate is that multiple contacts may occur before the final rebound. Unlike previous studies defining the contact time as the time span from the first impact to the final detachment, we define the contact time as the summation of each individual contact time. Using this definition, we show that the discontinuity at the critical impact phase disappears. The fact that the area-time integral also changes continually with the impact phase supports the assumption that the effect of impact phase on the solid–liquid contact may be continuous. Moreover, we show that the probability of impact phase is affected by the vibrating frequency and use it to calculate the weighted averaged outcome when the impact phase is not controlled. This study not only offers insights into the physics of droplet impact on vibrating surfaces but also can be used to guide the design of surfaces to achieve manageable wetting using vibration.

Funder

National Natural Science Foundation of China

Shanghai Science and Technology Talent Program

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3