The rate of thermodynamic cost against adiabatic and nonadiabatic fluctuations of a single gene circuit in Drosophila embryos

Author:

Zhang Kun12ORCID,Ramos Alexandre Ferreira3ORCID,Wang Erkang12,Wang Jin4ORCID

Affiliation:

1. University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China

2. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People’s Republic of China

3. Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, Avenida Arlindo Bettio, 1000, Ermelino Matarazzo, Sao Paulo SP CEP, 03828-000, Brazil

4. Department of Chemistry and of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3400, USA

Abstract

We study the stochastic dynamics of the externally regulating gene circuit as an example of an eve-skipped gene stripe in the development of Drosophila. Three gene regulation regimes are considered: an adiabatic phase when the switching rate of the gene from the OFF to ON state is faster than the rate of mRNA degradation; a nonadiabatic phase when the switching rate from the OFF to ON state is slower than that of the mRNA degradation; and a bursting phase when the gene switching is fast and transcription is very fast, while the ON state probability is very low. We found that the rate of thermodynamic cost quantified by the entropy production rate can suppress the fluctuations of the gene circuit. A higher (lower) rate of thermodynamic cost leads to reduced (increased) fluctuations in the number of gene products in the adiabatic (nonadiabatic) regime. We also found that higher thermodynamic cost is often required to sustain the emergence of more gene states and, therefore, more heterogeneity coming from genetic mutations or epigenetics. We also study the stability of the gene state using the mean first passage time from one state to another. We found the monotonic decrease in time, i.e., in the stability of the state, in the transition from the nonadiabatic to adiabatic regimes. Therefore, as the higher rate of thermodynamic cost suppresses the fluctuations, higher stability requires higher thermodynamics cost to maintain.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Jilin Province

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3