MoSe2 nanosheet as a lung cancer biosensor: A DFT study

Author:

Mosahebfard Ali1ORCID,Moaddeli Mohammad2ORCID

Affiliation:

1. Department of Electrical Engineering, Faculty of Engineering, Fasa University 1 , Fasa, Iran

2. Department of Materials Science and Engineering, School of Engineering, Shiraz University 2 , Shiraz, Iran

Abstract

Early cancer diagnosis strongly relies on finding appropriate materials for the detection of respected biomarkers. For the first time, we have theoretically investigated the capability of the MoSe2 monolayer to detect three lung cancer biomarkers, including hexanal, nonanal, and p-cresol. To this end, adsorption performance, bandgap alteration, and charge transfer of the MoSe2 monolayer upon exposure to the three biomarkers were studied using density functional theory. The results, in all cases, indicate that the charge transfer is from the monolayer to the adsorbed biomarkers, and the adsorption of biomarkers decreases the bandgap of the monolayer, approving the p-type sensing character of the MoSe2 monolayer. This is in complete agreement with the band structure analysis of the material and the previous reports in the literature. Our findings demonstrated the appropriate performance of the MoSe2 monolayer in terms of the physisorption of the lung cancer biomarkers and desirable recovery times in the desorption process. Further performance enhancement of MoSe2 as a lung cancer biosensor can be the subject of future studies.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3