All-optical triangular and honeycomb lattices of exciton–polaritons

Author:

Alyatkin Sergey1ORCID,Sigurðsson Helgi23ORCID,Kartashov Yaroslav V.4ORCID,Gnusov Ivan1ORCID,Sitnik Kirill1ORCID,Töpfer Julian D.1ORCID,Lagoudakis Pavlos G.1ORCID

Affiliation:

1. Hybrid Photonics Laboratory, Skolkovo Institute of Science and Technology, Territory of Innovation Center Skolkovo 1 , Bolshoy Boulevard 30, Building 1, 121205 Moscow, Russia

2. Institute of Experimental Physics, Faculty of Physics, University of Warsaw 2 , ul. Pasteura 5, PL-02-093 Warsaw, Poland

3. Science Institute, University of Iceland 3 , Dunhagi 3, IS-107 Reykjavik, Iceland

4. Institute of Spectroscopy of Russian Academy of Sciences 4 , Fizicheskaya Str., 5, Troitsk, Moscow 108840, Russia

Abstract

We implement an all-optically reconfigurable triangular lattice of exciton–polariton condensates in a III–V semiconductor microcavity. For this, we utilize a spatial light modulator to structure an incident nonresonant excitation laser beam into a corresponding triangular lattice of Gaussian beams that are focused onto the cavity plane. The optical excitation pattern locally stimulates and blueshifts polaritons due to exciton interactions. At a critical pump power, polaritons condense into a macroscopically coherent Bloch state with sharp Bragg peaks. We reconstruct the full band structure of the system through energy tomography techniques as a function of lattice constant, allowing us to resolve polaritonic Bloch bands from the condensate emission. While for sufficiently large lattice constants, one observes the formation of triangular arrays of condensates, for small lattice constant and pump powers above condensation threshold, one observes the formation of honeycomb, instead of triangular, lattice of condensates, with clear evidence of condensation into the S-band. Our results underpin the quality of all-optically engineered polariton lattices to simulate condensed matter systems in the strong coupling regime.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3