An attention mechanism based deep nonlinear ensemble paradigm of strengthened feature extraction method for wind power prediction

Author:

Wang Jujie1ORCID,Liu Yafen1

Affiliation:

1. School of Management Science and Engineering, Nanjing University of Information Science and Technology , Nanjing 210044, China

Abstract

The inherent uncertainty of wind power always hampers difficulties in the development of wind energy and the smooth operation of power systems. Therefore, reliable ultra-short-term wind power prediction is crucial for the development of wind energy. In this research, a two-stage nonlinear ensemble paradigm based on double-layer decomposition technology, feature reconstruction, intelligent optimization algorithm, and deep learning is suggested to increase the prediction accuracy of ultra-short-term wind power. First, using two different signal decomposition techniques for processing can further filter out noise in the original signal and fully capture different features within it. Second, the multiple components obtained through double decomposition are reconstructed using sample entropy theory and reassembled into several feature subsequences with similar complexity to simplify the input variables of the prediction model. Finally, based on the idea of a two-stage prediction strategy, the cuckoo search algorithm and the attention mechanism optimized long- and short-term memory model are applied to the prediction of feature subsequences and nonlinear integration, respectively, to obtain the final prediction results. Two sets of data from wind farms in Liaoning Province, China are used for simulation experiments. The final empirical findings indicate that, in comparison to other models, the suggested wind power prediction model has a greater prediction accuracy.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3