A rheological characterization of synthetic detergent formulations

Author:

Ciccone Giuseppe1ORCID,Skopalik Simeon2ORCID,Smart Claire3ORCID,Gezgin Senol4ORCID,Ridland David3,Paul Manosh C.2ORCID,Noriega Escobar María del Pilar5,Tassieri Manlio2ORCID

Affiliation:

1. Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8LT, United Kingdom

2. James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom

3. Soapworks Ltd, Coltness St., Glasgow G33 4JD, United Kingdom

4. NETZSCH-Gerätebau GmbH, Wittelsbacherstraße 42, Selb, Germany

5. Daabon Group, Santa Marta, Colombia

Abstract

Soap bars offer a valuable alternative to liquid soaps and their market is flourishing in response to society's commitment to the Green Economy and sustainable products. The advent of synthetic detergent (syndet) “soap” formulations has opened markets for products such as shampoo, conditioner, and facial bars. However, their processability has been revealed to be less controllable than conventional fatty acid-based soaps. In this work, we present a rheological characterization of a set of syndet formulations as a function of both their moisture content and of a compressional stress applied perpendicularly to the shear deformation, as experienced by the materials within extruders during the production process. The main outcome of our investigation reveals that syndet shows a significant stiffening when subjected to compressional stress and a slight reduction of the yield stress as a function of the moisture content. In particular, we report that, within the instrumental limits of applicable normal stresses (i.e., from ∼1  to ∼300 kPa), both the linear viscoelastic moduli of syndets and their yield stress increase by two orders of magnitude; thus, potentially explaining the difficulties encountered during their production.

Funder

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3