Model selection of chaotic systems from data with hidden variables using sparse data assimilation

Author:

Ribera H.1ORCID,Shirman S.1ORCID,Nguyen A. V.1ORCID,Mangan N. M.1ORCID

Affiliation:

1. Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, USA

Abstract

Many natural systems exhibit chaotic behavior, including the weather, hydrology, neuroscience, and population dynamics. Although many chaotic systems can be described by relatively simple dynamical equations, characterizing these systems can be challenging due to sensitivity to initial conditions and difficulties in differentiating chaotic behavior from noise. Ideally, one wishes to find a parsimonious set of equations that describe a dynamical system. However, model selection is more challenging when only a subset of the variables are experimentally accessible. Manifold learning methods using time-delay embeddings can successfully reconstruct the underlying structure of the system from data with hidden variables, but not the equations. Recent work in sparse-optimization based model selection has enabled model discovery given a library of possible terms, but regression-based methods require measurements of all state variables. We present a method combining variational annealing—a technique previously used for parameter estimation in chaotic systems with hidden variables—with sparse-optimization methods to perform model identification for chaotic systems with unmeasured variables. We applied the method to ground-truth time-series simulated from the classic Lorenz system and experimental data from an electrical circuit with Lorenz-system like behavior. In both cases, we successfully recover the expected equations with two measured and one hidden variable. Application to simulated data from the Colpitts oscillator demonstrates successful model selection of terms within nonlinear functions. We discuss the robustness of our method to varying noise.

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3