Piezo bender controller for precise optical dispersion compensation based on single-shot optical interferometry

Author:

Xiao Ching-Lun1ORCID,Chang Jui-Chi1ORCID,Haung Shao-Wei1,Lee Xin-Li1,Chang Chia-Yuan1ORCID

Affiliation:

1. Department of Mechanical Engineering, National Cheng Kung University , Tainan 70101, Taiwan

Abstract

Ultrafast lasers concentrate the energy in a short pulse with a duration of several tens to hundreds of femtoseconds. The resulting high peak power induces various nonlinear optical phenomena that find use in many different fields. However, in practical applications, the optical dispersion broadens the laser pulse width and spreads the energy in time, thereby reducing the peak power. Accordingly, the present study develops a piezo bender-based pulse compressor to compensate for this dispersion effect and restore the laser pulse width. The piezo bender has a rapid response time and a large deformation capacity and thus provides a highly effective means of performing dispersion compensation. However, due to hysteresis and creep effects, the piezo bender is unable to maintain a stable shape over time and hence the compensation effect is gradually degraded. To address this problem, this study further proposes a single-shot modified laterally sampled laser interferometer to estimate the parabolic shape of the piezo bender. The curvature variation of the bender is then sent as a feedback signal to a closed-loop controller to restore the bender to the desired shape. It is shown that the steady-state error of the converged group delay dispersion is around 530 fs2. Moreover, the ultrashort laser pulse is compressed from 1620 fs in the original condition to 140 fs in the compressed condition, corresponding to a 12-fold improvement.

Funder

Ministry of Science and Technology, Taiwan

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3