The large magnetocaloric effect in GdErHoCoM (M = Cr and Mn) high-entropy alloy ingots with orthorhombic structures

Author:

Wang Xuejiao1ORCID,Zong Shuotong23ORCID,Zhang Yan23,Mo Zhaojun4ORCID,Qiao Junwei1ORCID,Liaw Peter K.5ORCID

Affiliation:

1. School of Materials Science and Engineering, Taiyuan University of Technology 1 , Taiyuan 030024, China

2. School of Materials Science and Engineering, Taiyuan University of Science and Technology 2 , Taiyuan 030024, China

3. Laboratory of Magnetic and Electric Functional Materials and the Applications, The Key Laboratory of Shanxi Province 3 , Taiyuan 030024, China

4. Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences 4 , Ganzhou 341119, China

5. Department of Materials Science and Engineering, The University of Tennessee 5 , Knoxville, Tennessee 37996-2200, USA

Abstract

High-entropy alloys (HEAs) with significant magnetocaloric effects (MCEs) have attracted widespread attention due to their potential magnetic refrigeration applications over a much more comprehensive temperature range with large refrigerant capacity (RC). However, most of them are metallic glasses (MGs) with problems of limited size, resulting in the difficulty of further applications. Therefore, research on HEAs with crystalline structures and giant MCE is urgently needed. In this paper, GdErHoCoM (M = Cr and Mn) rare-earth HEA ingots with orthorhombic structures are developed, and their magnetic behavior and MCE are studied in detail. Phase investigations find that the main phase of GdErHoCoM ingots is probably (GdErHo)Co with an orthorhombic Ho3Co-type structure of a space group of Pnma. The secondary phases in GdErHoCoCr and GdErHoCoMn are body-center-cubic Cr and Mn-rich HoCo2-type phases, respectively. Magnetic investigations reveal that both ingots undergo a first-order magnetic phase transition below their respective Neel temperatures. Above their respective Neel temperatures, a second-order transition is observed. The Neel temperatures are 40 and 56 K for GdErHoCoCr and GdErHoCoMn, respectively. Additionally, the GdErHoCoCr and GdErHoCoMn ingots exhibit maximum magnetic entropy changes and RC values of 12.29 J/kg/K and 746 J/kg and 10.13 J/kg/K and 606 J/kg, respectively, under a magnetic field of 5 T. The ingots GdErHoCoM (M = Cr and Mn) show excellent MEC properties and can be manufactured easily, making them promising for magnetic refrigerant applications.

Funder

Fundamental Research Program of Shanxi Province

Shanxi Scholarship Council of China

the specical fund for Science and Technology Innovation Teams of Shanxi Province

National Science Foundation

Mational Science Foundation

US Army Research Office

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3