Unit conversion in pseudopotential lattice Boltzmann method for liquid–vapor phase change simulations

Author:

Wang Si-Cheng1ORCID,Tong Zi-Xiang1ORCID,He Ya-Ling1,Liu Xiang1

Affiliation:

1. Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China

Abstract

Pseudopotential lattice Boltzmann (LB) model is an effective mesoscopic method for liquid–vapor phase change simulations. In LB methods, calculations are often carried out in lattice units. Thus, a correct mapping from the lattice unit system to the physical unit system is crucial for accurate simulations of practical problems. The unit conversion for liquid–vapor phase change problems is more complicated than single-phase problems, because an equation of state (EOS) for a nonideal fluid is introduced in the pseudopotential two-phase model. In this work, a novel unit conversion method for the pseudopotential LB model is proposed. The basic strategy is to obtain the conversion relations of fundamental units by mapping the surface tension and EOS parameters related to fluid properties, and thus, the unit conversion relations of other quantities are deduced. Numerical simulations of benchmark problems including the film evaporation and the bubble heterogeneous nucleation from a V-shaped cavity are carried out, and the simulation results are converted to the physical unit system by the proposed method. The numerical results demonstrate that the proposed method is able to recover the physical-unit latent heat of the fluid in the film evaporation problem. In the bubble nucleation from a V-shaped cavity problem, the conventional unit conversion method cannot derive the correct superheat temperature in the physical unit, whereas the proposed method based on the fundamental units recovers the critical superheat temperature which is consistent with the analytical result.

Funder

Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3