Study on the aging characteristics of PET for SF6 gas-insulated transformer

Author:

Zhang Daning1ORCID,Xu Haisong1ORCID,Yang Dingqian2,Wang Qian3,Mu Haibao1,Zhang Guanjun1ORCID

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University 1 , Xi’an 710049, China

2. Electric Power Research Institute of State Grid Xinjiang Electric Power Co., Ltd. 2 , Urumqi 830000, China

3. State Grid Beijing Electric Power Co., Ltd. 3 , Beijing 100031, China

Abstract

SF6 gas insulated transformers (GITs) are extensively utilized in underground substations within densely populated areas of large- and medium-sized cities, praised for their excellent non-flammability and operational reliability. However, the aging characteristics of gas–solid composite insulation (SF6–PET) within GITs remain unclear, complicating the effective evaluation of their aging condition. In this study, we performed accelerated thermal aging experiments on type 6020 polyethylene terephthalate (PET) films under an SF6 gas environment at 150 °C. We investigated the aging characteristics of PET materials at various stages using differential scanning calorimetry, tensile tests, near-infrared spectroscopy (NIRS), and frequency domain dielectric spectroscopy. Our findings indicate that the crystallinity and fracture elongation of PET materials initially increased before decreasing as aging progressed, while tensile strength steadily declined. In addition, the absorption rate observed in NIRS diminished with aging. Utilizing linear discriminant analysis, we achieved dimension reduction of characteristic parameters across different wavelengths, facilitating the classification of PET materials at diverse aging times. The tan δ–f curves of PET films initially decreased and subsequently rose with aging. By applying the Havriliak–Negami (H–N) dielectric relaxation model across three distinct frequency bands of the dielectric spectrum, a significant correlation was discerned between the aging state of PET materials and the characteristic relaxation peaks, τ1 and τ2. Fitting the H–N relaxation model and Arrhenius equation allowed us to negate the impact of “temperature drift,” yielding an interface polarization activation energy of Ea = 0.69 eV. This research on the aging performance of PET materials in an SF6 gas atmosphere provides a vital foundation for assessing the aging state of SF6-insulated GITs.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Key Research and Development Projects of Shaanxi Province

Publisher

AIP Publishing

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3