Numerical thermalization in 2D PIC simulations: Practical estimates for low-temperature plasma simulations

Author:

Jubin Sierra12ORCID,Powis Andrew Tasman2ORCID,Villafana Willca2ORCID,Sydorenko Dmytro3ORCID,Rauf Shahid4ORCID,Khrabrov Alexander V.2ORCID,Sarwar Salman1ORCID,Kaganovich Igor D.2ORCID

Affiliation:

1. Princeton University 1 , Princeton, New Jersey 08544, USA

2. Princeton Plasma Physics Laboratory 2 , Princeton, New Jersey 08543, USA

3. University of Alberta 3 , Edmonton, Alberta T6G 2E1, Canada

4. Applied Materials, Inc 4 ., 3333 Scott Blvd, Santa Clara, California 95054, USA

Abstract

The process of numerical thermalization in particle-in-cell (PIC) simulations has been studied extensively. It is analogous to Coulomb collisions in real plasmas, causing particle velocity distributions (VDFs) to evolve toward a Maxwellian as macroparticles experience polarization drag and resonantly interact with the fluctuation spectrum. This paper presents a practical tutorial on the effects of numerical thermalization in 2D PIC applications. Scenarios of interest include simulations, which must be run for many thousands of plasma periods and contain a population of cold electrons that leave the simulation space very slowly. This is particularly relevant to many low-temperature plasma discharges and materials processing applications. We present numerical drag and diffusion coefficients and their associated timescales for a variety of grid resolutions, discussing the circumstances under which the electron VDF is modified by numerical thermalization. Though the effects described here have been known for many decades, direct comparison of analytically derived, velocity-dependent numerical relaxation timescales to those of other relevant processes has not often been applied in practice due to complications that arise in calculating thermalization rates in 1D simulations. Using these comparisons, we estimate the impact of numerical thermalization in several examples of low-temperature plasma applications including capacitively coupled plasma discharges, inductively coupled plasma discharges, beam plasmas, and hollow cathode discharges. Finally, we discuss possible strategies for mitigating numerical relaxation effects in 2D PIC simulations.

Funder

Princeton Plasma Physics Laboratory

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3