Lyotropic liquid crystal phases of monoolein in protic ionic liquids

Author:

Paporakis Stefan1ORCID,Brown Stuart J.1ORCID,Darmanin Connie2,Seibt Susanne3,Adams Patrick1ORCID,Hassett Michael1ORCID,Martin Andrew V.1ORCID,Greaves Tamar L.1ORCID

Affiliation:

1. School of Science, College of STEM, RMIT University 1 , 124 La Trobe Street, Melbourne VIC 3000, Australia

2. La Trobe Institute for Molecular Science, Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical Science, La Trobe University 2 , Bundoora VIC 3086, Australia

3. SAXS/WAXS Beamline, Australian Synchrotron, ANSTO 3 , 800 Blackburn Road, VIC-3168 Clayton, Australia

Abstract

Monoolein-based liquid crystal phases are established media that are researched for various biological applications, including drug delivery. While water is the most common solvent for self-assembly, some ionic liquids (ILs) can support lipidic self-assembly. However, currently, there is limited knowledge of IL-lipid phase behavior in ILs. In this study, the lyotropic liquid crystal phase behavior of monoolein was investigated in six protic ILs known to support amphiphile self-assembly, namely ethylammonium nitrate, ethanolammonium nitrate, ethylammonium formate, ethanolammonium formate, ethylammonium acetate, and ethanolammonium acetate. These ILs were selected to identify specific ion effects on monoolein self-assembly, specifically increasing the alkyl chain length of the cation or anion, the presence of a hydroxyl group in the cation, and varying the anion. The lyotropic liquid crystal phases with 20–80 wt. % of monoolein were characterized over a temperature range from 25 to 65 °C using synchrotron small angle x-ray scattering and cross-polarized optical microscopy. These results were used to construct partial phase diagrams of monoolein in each of the six protic ILs, with inverse hexagonal, bicontinuous cubic, and lamellar phases observed. Protic ILs containing the ethylammonium cation led to monoolein forming lamellar and bicontinuous cubic phases, while those containing the ethanolammonium cation formed inverse hexagonal and bicontinuous cubic phases. Protic ILs containing formate and acetate anions favored bicontinuous cubic phases across a broader range of protic IL concentrations than those containing the nitrate anion.

Funder

Australian Research Council

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3