PEDOT:PSS-coated platinum electrodes for neural stimulation

Author:

Dijk Gerwin12ORCID,Pas Jolien2ORCID,Markovic Katarina3ORCID,Scancar Janez34ORCID,O'Connor Rodney Philip15ORCID

Affiliation:

1. Department of Bioelectronics, Mines Saint-Etienne, Centre CMP 1 , Gardanne 13541, France

2. Panaxium SAS 2 , Aix-en-Provence 13100, France

3. Department of Environmental Sciences, Jožef Stefan Institute 3 , Jamova 39, 1000 Ljubljana, Slovenia

4. Jožef Stefan International Postgraduate School 4 , Jamova 39, 1000 Ljubljana, Slovenia

5. Department of Chemical Engineering, Polytechnique Montreal 5 , 2900 boul Edouard-Montpetit, Montreal H3T 1J4 Canada

Abstract

Safe and long-term electrical stimulation of neurons requires charge injection without damaging the electrode and tissue. A common strategy to diminish adverse effects includes the modification of electrodes with materials that increases the charge injection capacity. Due to its high capacitance, the conducting polymer PEDOT:PSS is a promising coating material; however, the neural stimulation performance in terms of stability and safety remains largely unexplored. Here, PEDOT:PSS-coated platinum (Pt-PEDOT:PSS) microelectrodes are examined for neural stimulation and compared to bare platinum (Pt) electrodes. Microelectrodes in a bipolar configuration are used to deliver current-controlled, biphasic pulses with charge densities ranging from 64 to 255 μC cm−2. Stimulation for 2 h deteriorates bare Pt electrodes through corrosion, whereas the PEDOT:PSS coating prevents dissolution of Pt and shows no degradation. Acute stimulation of primary cortical cells cultured as neurospheres shows similar dependency on charge density for Pt and Pt-PEDOT:PSS electrodes with a threshold of 127 μC cm−2 and increased calcium response for higher charge densities. Continuous stimulation for 2 h results in higher levels of cell survival for Pt-PEDOT:PSS electrodes. Reduced cell survival on Pt electrodes is most profound for neurospheres in proximity of the electrodes. Extending the stimulation duration to 6 h increases cell death for both types of electrodes; however, neurospheres on Pt-PEDOT:PSS devices still show significant viability whereas stimulation is fatal for nearly all cells close to the Pt electrodes. This work demonstrates the protective properties of PEDOT:PSS that can be used as a promising approach to extend electrode lifetime and reduce cell damage for safe and long-term neural stimulation.

Publisher

AIP Publishing

Subject

Biomedical Engineering,Biomaterials,Biophysics,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3