Toward surface-enhanced Raman scattering using electroless substrate for trace arsenic detection and speciation

Author:

Adier Marie1ORCID,Jurdyc Anne-Marie1,Hurel Charlotte2ORCID,Goutaland François3ORCID,Michalon Jean-Yves3ORCID,Merlen Alexandre4ORCID,Dussardier Bernard2ORCID,Vouagner Dominique1ORCID

Affiliation:

1. Institut Lumière Matière (ILM) 1 , UMR5306 Université Lyon 1-CNRS, 69622 Villeurbanne, France

2. Institut de Physique de Nice (INPHYNI), Université Côte d’Azur, CNRS, 2 UMR 7010, Nice, France

3. Laboratoire Hubert Curien (LabHC) 3 , UMR 5516 Université Jean Monnet, 42000 Saint Etienne, France

4. Institut Matériaux Microélectronique Nanoscience de Provence (IM2NP), Université de Toulon 4 , UMR 7334, Aix-Marseille Université, Toulon , France

Abstract

Arsenic is one of the most toxic elements present in the environment, especially in water. The World Health Organization (WHO) recommends a maximum concentration of arsenic in drinkable water of 10 μg/l (10 ppb). Sensors implementing Surface Enhanced Raman Scattering (SERS) can detect chemical species at low concentrations. The aim of this study is to compare two kinds of silver-coated SERS substrates for detection and speciation of trace, trivalent and pentavalent, inorganic arsenic compounds. One type of substrate was prepared by a classical thermal evaporation technique, and the second type by an electroless process. The thermally evaporated substrates allowed the detection of As(III) only, at a limit of detection (LOD) of approximately 50 mg/l, whereas As(V) could not be detected at any analyte concentration. The electroless substrates allow one to differentiate As(III) and As(V) with a LOD 1 μg/l (1 ppb) equal for each valency, below the WHO recommendation. The electroless substrates show a very large sensitivity across up to five orders of magnitude in terms of analyte concentration. Although the SERS intensity shows a nonlinear behavior over this range of concentrations, these preliminary results are encouraging in the framework of the demonstration of trace As SERS sensors in drinkable water.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3