Predissociation dynamics of the hydroxyl radical (OH) based on a five-state spectroscopic model

Author:

Mitev Georgi B.1ORCID,Tennyson Jonathan1ORCID,Yurchenko Sergei N.1ORCID

Affiliation:

1. Department of Physics and Astronomy, University College London , Gower St., London WC1E 6BT, United Kingdom

Abstract

Multi-reference configuration interaction potential energy curves (PECs) and spin–orbit couplings for the X 2Π, A 2Σ+, 1 2Σ−, 1 4Σ−, and 1 4Π states of OH are computed and refined against empirical energy levels and transitions to produce a spectroscopic model. Predissociation lifetimes are determined by discretizing continuum states in the variational method nuclear motion calculation by restricting the calculation to a finite range of internuclear separations. Varying this range gives a series of avoided crossings between quasi-bound states associated with the A 2Σ+ and continuum states, from which predissociation lifetimes are extracted. 424 quasi-bound A 2Σ+ state rovibronic energy levels are analyzed, and 374 predissociation lifetimes are produced, offering good coverage of the predissociation region. Agreement with measured lifetimes is satisfactory, and a majority of computed results were within experimental uncertainty. A previously unreported A 2Σ+ state predissociation channel that goes via X 2Π is identified in the calculations. A Python package, binSLT, produced to calculate predissociation lifetimes, associated line broadening parameters, and lifetime uncertainties is made available. The PECs and other curves from this work will be used to produce a rovibronic ExoMol line list and temperature-dependent photodissociation cross sections for the hydroxyl radical.

Funder

European Research Council

Science and Technology Facilities Council

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3