Optimizing electron injection barriers and hole-trapping ability for high-performance photomultiplication-type ternary organic photodetectors

Author:

Huang Jiang1,Fan Qingshan1ORCID,Jin Ziheng1,Zhang Hanqing1ORCID,Dou Zifan1,Wang Meiling1,Li Jian1,Xu Lin1,Zhou Guanrui1,Zhang Ting1ORCID,Chen Shi2ORCID

Affiliation:

1. State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China 1 , Chengdu 610054, People’s Republic of China

2. College of Electrical Engineering, Sichuan University 2 , Chengdu 610065, People’s Republic of China

Abstract

Photomultiplication-type organic photodetectors (PM-OPDs) have been stimulating more and more researchers' interest owing to their extremely high external quantum efficiency (EQE). To prepare high-performance PM-OPDs with a broadband spectral response range from visible to near-infrared and investigate the role of energy levels of the donor and acceptor on its responsiveness, the non-fullerene acceptor Y6 was added into the P3HT:PC71BM system in this work. The photomultiplication phenomenon with the highest EQE has been achieved under both forward and reverse bias when the ratio of Y6 in two acceptors approaches 80 wt. %. The introduction of Y6 not only promotes the formation of moderate hole traps in the active layer but also results in an appropriate amount of low injection barriers to allow more electron injection from the external circuit. Therefore, the spectral response of the device with 80 wt. % Y6 has been broadened from 750 to 950 nm, and the champion EQE of 15 691% at 10 V and 7639% at −20 V at 850 nm was achieved. This work reveals the importance of hole-trapping ability determined by the energy level difference between the donor and the acceptor for the selection of the multiplication system and provides a scheme for the design of high-performance broadband PM-OPDs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Science Fund for Creative Research Groups

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Guangdong Basic and Applied Basic Research Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3