Addition of Laponite to gelatin methacryloyl bioinks improves the rheological properties and printability to create mechanically tailorable cell culture matrices

Author:

Davern Jordan W.1234ORCID,Hipwood Luke145ORCID,Bray Laura J.123ORCID,Meinert Christoph34ORCID,Klein Travis J.123ORCID

Affiliation:

1. Centre for Biomedical Technologies, Queensland University of Technology (QUT) 1 , Brisbane, QLD, Australia

2. School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT) 2 , Brisbane, QLD 4059, Australia

3. ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT) 3 , Brisbane, QLD 4059, Australia

4. Gelomics Pty Ltd 4 , Brisbane, QLD 4059, Australia

5. Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT) 5 , Brisbane, QLD 4059, Australia

Abstract

Extrusion-based bioprinting has gained widespread popularity in biofabrication due to its ability to assemble cells and biomaterials in precise patterns and form tissue-like constructs. To achieve this, bioinks must have rheological properties suitable for printing while maintaining cytocompatibility. However, many commonly used biomaterials do not meet the rheological requirements and therefore require modification for bioprinting applications. This study demonstrates the incorporation of Laponite-RD (LPN) into gelatin methacryloyl (GelMA) to produce highly customizable bioinks with desired rheological and mechanical properties for extrusion-based bioprinting. Bioink formulations were based on GelMA (5%–15% w/v) and LPN (0%–4% w/v), and a comprehensive rheological design was applied to evaluate key rheological properties necessary for extrusion-based bioprinting. The results showed that GelMA bioinks with LPN (1%–4% w/v) exhibited pronounced shear thinning and viscoelastic behavior, as well as improved thermal stability. Furthermore, a concentration window of 1%–2% (w/v) LPN to 5%–15% GelMA demonstrated enhanced rheological properties and printability required for extrusion-based bioprinting. Construct mechanical properties were highly tunable by varying polymer concentration and photocrosslinking parameters, with Young's moduli ranging from ∼0.2 to 75 kPa. Interestingly, at higher Laponite concentrations, GelMA cross-linking was inhibited, resulting in softer hydrogels. High viability of MCF-7 breast cancer cells was maintained in both free-swelling droplets and printed hydrogels, and metabolically active spheroids formed over 7 days of culture in all conditions. In summary, the addition of 1%–2% (w/v) LPN to gelatin-based bioinks significantly enhanced rheological properties and retained cell viability and proliferation, suggesting its suitability for extrusion-based bioprinting.

Funder

ARC Training Centre for Cell and Tissue Engineering Technologies

QUT Centre for Biomedical Technologies

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3