Organic solar cells pros and cons: Outlooks toward semitransparent cell efficiency and stability

Author:

Ghosh Bablu K.1ORCID,Jha Prafulla Kumar2ORCID,Ghosh Swapan K.3,Biswas Tapan K.4ORCID

Affiliation:

1. Electrical and Electronic Engineering Program, Faculty of Engineering, University Malaysia Sabah 1 , Kota-kinablu 88400, Sabah, Malaysia

2. Department of Physics, Faculty of Science, The M. S. University of Baroda 2 , Vadodara, Gujarat 390002, India

3. Department of Natural Sciences, National Institute of Technology, Kure College 3 , 2-2-11 Agaminami, Kure City, Hiroshima 737-8506, Japan

4. University of Rajshahi 4 , Rajshahi, Rajshahi - Dhaka Highway, Rajshahi 6205, Bangladesh

Abstract

Organic solar cells (OSCs) are promising for low emissive photovoltaic technology. Excitonic absorption and charge generation to transport process OSC energy loss lessening are central. In this context, donor–acceptor barrier offset, related binding, and thermal effect on energy loss are the key challenge. Semitransparent organic solar cell visible band transmission and near infrared band absorption are anticipated. Near infrared band absorption in a Si material solar cell is higher that supports more energy conversion. Moreover, greater carrier selectivity and open circuit voltage (Voc) is incredible to increase the energy efficiency. OSC utmost absorption but carrier generation and charge transfer state donor–acceptor barrier offset increases carrier recombination loss. Upon analysis of small molecule donors and polymers along with non-fullerene and previously studied fullerene acceptors, it is realized that active material morphology, thickness, and interface design are impending to overcome the energy loss. For efficiency–transparency trade-off as well as stability problem lessening purpose thin active materials and interface, their absorption band tenability and carrier selectivity are main requisites. In this scope, very thin non-fullerene acceptors in ternary blend heterostructures and innovative-transparent hole transport layers can play a vital role. Therefore, recombination loss lessening and transparency purpose near infrared band absorbent thin active layer ternary blend and transparent electrodes of a thin hetero-interface predominant field effect over the thermal effect are reported in the efficiency and stability scope.

Funder

University Malaysia Sabah

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3