Affiliation:
1. Institutes of Physical Science and Information Technology, Institute of Energy, Hefei Comprehensive National Science Center (Anhui Energy Laboratory), Anhui University 1 , Hefei 230601, People's Republic of China
2. School of Materials Science and Engineering, Anhui University 2 , Hefei 230601, People's Republic of China
Abstract
Possessing large specific surface areas and rich metal redox sites, layered double hydroxides (LDHs) are potentially suitable oxygen evolution reaction catalysts. It is a pity that they usually show poor hydrogen evolution reaction (HER) activity on account of the limited conductivity and deficient active sites. Taking NiFe LDH nanosheets as an example, we develop a “one stone three birds” plasma engraving strategy to enhance the HER activity of NiFe LDH. The “three birds,” including the reduction of Ni2+ to Ni nanoparticles (Ni NPs), generation of more oxygen vacancies (Ov), and exfoliation of nanosheets into much thinner ones, can obviously improve the conductivity and active sites of NiFe LDH. The plasma processing can also enhance water adsorption and accelerate the Volmer step during HER. As expected, the plasma-engraved NiFe LDH (PEH) exhibits enhanced HER activity with a low overpotential of 22 mV at 10 mA cm−2 and a small Tafel slope of 38 mV dec−1 in 1 M KOH, much better than NiFe LDH (202 mV, 145 mV dec−1). By combining optical emission spectroscopy diagnosis and structural/electrochemical characterizations, the relationship among the electron excitation temperature (Texc) in plasma, the amount of Ni NPs and Ov in PEH, and the HER activity of PEH is established. Excitingly, the PEH also displays splendid HER activity in both alkaline real seawater and overall water splitting.
Funder
National Natural Science Foundation of China
Outstanding Youth Fund of Anhui Province
University Synergy Innovation Program of Anhui Province
Subject
Physics and Astronomy (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献