Highly efficient coherent detection of terahertz pulses based on ethanol

Author:

Xiao Wen1ORCID,Zhang Minghao1ORCID,Zhang Rui2ORCID,Zhang Cunlin1,Zhang Liangliang1ORCID

Affiliation:

1. Key Laboratory of Terahertz Optoelectronics (MoE), Department of Physics, Capital Normal University 1 , Beijing 100048, China

2. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences 2 , Shenzhen 518055, China

Abstract

Water-based terahertz (THz) coherent detection scheme has been recently proposed, which overcomes the bandwidth limitation or high probe laser power demand in solid-/gas-based schemes. Here, we report a highly efficient THz coherent detection method using ethanol with superior performances under the mechanism of four-wave mixing. We systematically investigate the energy ratios and relative polarizations between the THz-induced second harmonic and control second harmonic (CSH) beams and reveal that ethanol always exhibits significantly higher detection sensitivity than water. The coherent, incoherent, or hybrid detection mode can be flexibly switched by changing the CSH beam polarization. The enhanced sensitivity derives from the much larger third-order nonlinear coefficient and lower ionization potential of ethanol. In addition, for the ethanol–water mixtures with various concentrations, the THz coherent detection signals can always be decomposed into the linear superposition of those from pure ethanol and neat water at the sub-picosecond timescale, indicating the synergistic contribution of ethanol and water molecules in the mixture during the detection process. This work provides a valid method to significantly improve the sensitivity of the liquid-based coherent detection scheme and a research perspective for exploring the solute–solvent molecular interactions.

Funder

National Natural Science Foundation of China

National Defence Science and Technology Innovation Special Zone Project of China

Shenzhen Science and Technology Program

Guangdong Basic and Applied Basic Reseach Foundation

Major Instrumentation Development Program of the Chinese Academy of Sciences

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3