Study on the scattered sound modulation with a programmable chessboard device

Author:

Ge Lili1ORCID,Peng Zilong1ORCID,Zan Hao1,Lyu Shijin2,Zhou Fulin3ORCID,Liang Youzhi4ORCID

Affiliation:

1. School of Energy and Power, Jiangsu University of Science and Technology 1 , Zhenjiang 212100, China

2. Nation Key Laboratory on Ship Vibration and Noise, China Ship Science Research Center 2 , Wuxi 214082, China

3. State Key Laboratory of Ocean Engineering, Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University 3 , Shanghai 200240, China

4. Department of Mechanical Engineering, Massachusetts Institute of Technology 4 , Cambridge, Massachusetts 02139, USA

Abstract

Metasurfaces open up unprecedented potential for applications in acoustic deflection. Achieving adaptive control of a scattered sound field (SSF) using a flexible metasurface structure is of great scientific interest. However, as the conventional finite element method (FEM) is limited by computational efficiency, it is necessary to develop a fast and accurate method to predict the SSF. In this work, we design a chessboard device with an array of square grooves for the modulation of SSF and develop a fast calculation method for 3D SSF using a Kirchhoff approximation phase correction. Several SSF spatial modulations obtained using the chessboard model are computed with a fast algorithm. In addition, an experimental test-case in a semi-anechoic chamber, contrasted and analyzed scattered acoustic pressure using FEM, is designed to regulate the SSF performance of the chessboard device. Field measurements obtained show that the spatial directivity of chessboard device can be modified by artificially programming the phase or depth distribution of the groove array. The chessboard device and associated fast calculation method lend themselves to applications in the acoustic stealth of targets in air or water.

Funder

the National Natural Science Youth Fund

the Jiangsu Provincial Natural Science Youth Fund

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3