Machine learning of kinetic energy densities with target and feature smoothing: Better results with fewer training data

Author:

Manzhos Sergei1ORCID,Lüder Johann234ORCID,Ihara Manabu1ORCID

Affiliation:

1. School of Materials and Chemical Technology, Tokyo Institute of Technology 1 , Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan

2. Department of Materials and Optoelectronic Science, National Sun Yat-sen University 2 , No. 70, Lien-Hai Road, Kaohsiung 80424, Taiwan

3. Center of Crystal Research, National Sun Yat-sen University 3 , No. 70, Lien-Hai Road, Kaohsiung 80424, Taiwan

4. Center for Theoretical and Computational Physics, National Sun Yat-sen University 4 , Kaohsiung 80424, Taiwan

Abstract

Machine learning (ML) of kinetic energy functionals (KEFs), in particular kinetic energy density (KED) functionals, is a promising way to construct KEFs for orbital-free density functional theory (DFT). Neural networks and kernel methods including Gaussian process regression (GPR) have been used to learn Kohn–Sham (KS) KED from density-based descriptors derived from KS DFT calculations. The descriptors are typically expressed as functions of different powers and derivatives of the electron density. This can generate large and extremely unevenly distributed datasets, which complicates effective application of ML techniques. Very uneven data distributions require many training datapoints, can cause overfitting, and can ultimately lower the quality of an ML KED model. We show that one can produce more accurate ML models from fewer data by working with smoothed density-dependent variables and KED. Smoothing palliates the issue of very uneven data distributions and associated difficulties of sampling while retaining enough spatial structure necessary for working within the paradigm of KEDF. We use GPR as a function of smoothed terms of the fourth order gradient expansion and KS effective potential and obtain accurate and stable (with respect to different random choices of training points) kinetic energy models for Al, Mg, and Si simultaneously from as few as 2000 samples (about 0.3% of the total KS DFT data). In particular, accuracies on the order of 1% in a measure of the quality of energy–volume dependence B′=EV0−ΔV−2EV0+E(V0+ΔV)ΔV/V02 (where V0 is the equilibrium volume and ΔV is a deviation from it) are obtained simultaneously for all three materials.

Funder

JST-Mirai Program

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3