Zero-point energy effects on the stability of water clusters: Implications on the uptake of hydrogen isotope substituted water on ice and clathrate hydrate phases

Author:

Ohmura Ryo1ORCID,Alavi Saman2ORCID

Affiliation:

1. Department of Mechanical Engineering, Keio University 1 , 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama 223-8522, Japan

2. Department of Chemistry and Biomolecular Sciences, University of Ottawa 2 , Ottawa, Ontario K1A 0R6, Canada

Abstract

To study the effect of hydrogen isotope substitution on the uptake of water during formation of clathrate hydrates, the harmonic intermolecular librational modes of selected water clusters (X2O)n with n = 2–6 and hydrogen isotopes X = H, D, and T are studied. The effects of the quantum mechanical zero-point energy (ZPE) in each cluster on the binding energies of the H2O, D2O, and T2O clusters are determined, with ZPE leading to the smallest binding energies in the H2O clusters and the largest binding energies in the T2O clusters. Corrections for anharmonicity of the librational modes are considered, and these bring the frequency ranges of the calculated intermolecular librational modes in the clusters to the experimental ranges of the librational modes in the infrared spectra of H2O and D2O solid ice and clathrate hydrate phases, and liquid H2O water. These calculations show the expected ranges of the binding energy of tritiated water onto a solid ice and clathrate hydrate surface and can help quantify the isotopic enrichment on a growing clathrate hydrate phase from the solution.

Publisher

AIP Publishing

Reference71 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3