Affiliation:
1. Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, USA
Abstract
Interfacial enhancements of chemical reaction equilibria and rates in liquid droplets are predicted using a combined theoretical and experimental analysis strategy. Self-consistent solutions of reaction and adsorption equilibria indicate that interfacial reactivity enhancement is driven primarily by the adsorption free energy of the product (or activated complex). Reactant surface activity has a smaller indirect influence on reactivity due to compensating reactant interfacial concentration and adsorption free energy changes, as well as adsorption-induced depletion of the droplet core. Experimental air-water interfacial adsorption free energies and critical micelle concentration correlations provide quantitative surface activity estimates as a function of molecular structure, predicting an increase in interfacial reactivity with increasing product size and decreasing product polarity, aromaticity, and charge (but less so for anions than cations). Reactions with small, neutral, or charged products are predicted to have little reactivity enhancement at an air–water interface unless the product is rendered sufficiently surface active by, for example, interactions with interfacial water dangling OH groups, charge transfer, or voltage fluctuations.
Funder
National Science Foundation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献