An experiment generates a specified mean strained rate turbulent flow: Dynamics of particles

Author:

Hassanian R.1ORCID,Helgadóttir Á.1ORCID,Bouhlali L.2,Riedel M.13ORCID

Affiliation:

1. The Faculty of Industrial Engineering, Mechanical Engineering, and Computer Science, University of Iceland, 102 Reykjavík, Iceland

2. Reykjavik University, 102 Reykjavik, Iceland

3. Juelich Supercomputing Centre, 52428 Jülich, Germany

Abstract

This study aimed to simulate straining turbulent flow empirically, having direct similarities with vast naturally occurring flows and engineering applications. The flow was generated in [Formula: see text] and seeded with passive and inertial particles. Lagrangian particle tracking and particle image velocimetry were employed to extract the dynamics of particle statistics and flow features, respectively. The studies for axisymmetric straining turbulent flow reported that the strain rate, flow geometry, and gravity affect particle statistics. To practically investigate mentioned effects in the literature, we present the behavior of both passive and inertial particles from the novel experiment conducted on initially homogeneous turbulence undergoing a sudden axisymmetric expansion. We represent the result with two different mean strains and Reynolds–Taylor microscales. However, this study, in contrast to the previous studies, considers the fields of inertial particles in the presence of gravity. The result discloses that the novel designed and conducted experiments simulated the flow satisfactorily. Then, the particle behavior in such flow showed the effectiveness of the flow distortion on particle dynamics such as velocity root mean square and Reynolds stress. Straining turbulence flow is subject to many industrial applications and physics studies, such as stagnation points, external flow around an airfoil, internal flow in changeable cross section pipe, expansion in the engine mixing chamber, and leading edge erosion. This study's conclusion could apply constructively to these areas.

Funder

CoE RAISE

EuroCC

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3