Numerical study on flame acceleration and deflagration-to-detonation transition: Spatial distribution of solid obstacles

Author:

Wang JiabaoORCID,Li Tong,Ji Shaoqiu,Nie Yunxi,Jiang Xi Zhuo,Zhu YuejinORCID

Abstract

This study conducts a detailed numerical investigation on the spatial distribution of solid obstacles using the large eddy simulation method. It is discovered that although flame acceleration induced by solid obstacles is dominated by factors such as flow field disturbances, vortices and recirculation zones, turbulence, flame surface areas and combustion heat release rates, etc., the characteristics of the leading shock wave are key to detonation initiation. Specifically, the intensity of the leading shock wave, its formation time, and its distance from the flame front significantly affect detonation initiation. Depending on the state of the shock wave, the detonation initiation process may occur through various mechanisms such as shock reflection, shock focusing. Overall, the types of detonation initiation in this study all belong to the shock detonation transition. However, the detonation initiation process can be further classified into two categories: (I) Detonation induced by shock wave reflection; (II) detonation triggered by shock wave focusing. Despite certain disparities in the detonation initiation process, all detonation initiation processes conform to the gradient theory, and the flame evolution processes in all cases consistently follow three stages: the laminar slow-ignition stage; the turbulent deflagration stage; the detonation initiation stage. Furthermore, the study further discerns that, compared to positioning obstacles on the wall, placing obstacles inside the combustion chamber can further augment the detonation-assisting effect. However, excessively sparse or dense spatial distributions of solid obstacles fail to yield the optimal detonation effect. An optimal distribution exists, which triggers the fastest detonation initiation.

Funder

National Natural Science Foundation of China

Liaoning Revitalization Talents Program

Publisher

AIP Publishing

Reference41 articles.

1. Hydrogen flame and detonation physics;Phys. Fluids,2024

2. Effect of solid obstacle distribution on flame acceleration and DDT in obstructed channels filled with hydrogen-air mixture;Int. J. Hydrogen Energy,2022

3. Influence of tube roughness on the formation and detonation propagation in gas;J. Exp. Theor. Phys.,1940

4. Occurrence of detonation in gases in rough-walled tubes;Sov. J. Tech. Phys.,1947

5. Deflagration-to-detonation transition in H2-air mixtures: Effect of blockage ratio,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3