Theory of mobility of inhomogeneous-polymer-grafted particles

Author:

Tian Xiaofei12ORCID,Chen Ye12ORCID,Xu Xiaolei1ORCID,Xu Wen-Sheng12ORCID,Chen Jizhong3ORCID

Affiliation:

1. State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 1 , Changchun 130022, People’s Republic of China

2. School of Applied Chemistry and Engineering, University of Science and Technology of China 2 , Hefei 230026, People’s Republic of China

3. School of Chemical Engineering and Light Industry, Guangdong University of Technology 3 , Guangzhou 510006, People’s Republic of China

Abstract

We develop a theory for the motion of a particle grafted with inhomogeneous bead-spring Rouse chains via the generalized Langevin equation (GLE), where individual grafted polymers are allowed to take different bead friction coefficients, spring constants, and chain lengths. An exact solution of the memory kernel K(t) is obtained for the particle in the time (t) domain in the GLE, which depends only on the relaxation of the grafted chains. The t-dependent mean square displacement g(t) of the polymer-grafted particle is then derived as a function of the friction coefficient γ0 of the bare particle and K(t). Our theory offers a direct way to quantify the contributions of the grafted chain relaxation to the mobility of the particle in terms of K(t). This powerful feature enables us to clarify the effect on g(t) of dynamical coupling between the particle and grafted chains, leading to the identification of a relaxation time of fundamental importance in polymer-grafted particles, namely, the particle relaxation time. This timescale quantifies the competition between the contributions of the solvent and grafted chains to the friction of the grafted particle and separates g(t) into the particle- and chain-dominated regimes. The monomer relaxation time and the grafted chain relaxation time further divide the chain-dominated regime of g(t) into subdiffusive and diffusive regimes. Analysis of the asymptotic behaviors of K(t) and g(t) provides a clear physical picture of the mobility of the particle in different dynamical regimes, shedding light on the complex dynamics of polymer-grafted particles.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3