Affiliation:
1. Institute for Plasma Research 1 , Gandhinagar, Gujarat 382428, India
2. Homi Bhabha National Institute, Training School Complex 2 , Mumbai 400094, India
Abstract
Spatiotemporal evolution of large amplitude upper-hybrid oscillations in a cold homogeneous plasma in the presence of an inhomogeneous magnetic field is studied analytically and numerically using the Dawson sheet model [J. Dawson, Phys. Fluids 5, 445–459 (1962)]. It is observed that the inhomogeneity in magnetic field, which causes the upper-hybrid frequency to acquire a spatial dependence, results in phase mixing and subsequent breaking of the upper-hybrid oscillations at arbitrarily low amplitudes. This result is in sharp contrast to the usual upper-hybrid oscillations in a homogeneous magnetic field, where the oscillations break within a fraction of a period when the amplitude exceeds a certain critical value [R. C. Davidson, Methods in Nonlinear Plasma Theory (Academic, New York, 1972)]. Our perturbative calculations show that the phase mixing (wave breaking) time scales inversely with the amplitude of magnetic field inhomogeneity (Δ) and amplitude of imposed density perturbation (δ) and scales directly with the ratio of magnetic field inhomogeneity scale length to imposed density perturbation scale length [(α/kL)−1] as ωpeτmix∼(1+β2)3/2kL/(β2δΔα), where β is the ratio of electron cyclotron frequency to electron plasma frequency. Further phase mixing time measured in simulations, performed using a 1–1/2 D code based on the Dawson sheet model [J. Dawson, Phys. Fluids 5, 445–459 (1962)], shows good agreement with the above-mentioned scaling. This result may be of relevance to plasma based particle acceleration experiments in the presence of a transverse inhomogeneous magnetic field.